Nanopore Patterned Pt Array Electrodes for Triple Phase Boundary Study in Low Temperature SOFC

نویسندگان

  • Young Beom Kim
  • Ching-Mei Hsu
  • Steve T. Connor
  • Turgut M. Gür
  • Yi Cui
  • Fritz B. Prinz
چکیده

This paper describes the fabrication and investigation of morphologically stable model electrode structures with well-defined and sharp platinum/yttria-stabilized zirconia YSZ interfaces to study geometric effects at triple phase boundaries TPBs . A nanosphere patterning technique using monodispersed silica nanoparticles, which are applied to the YSZ surface by the Langmuir– Blodgett method, is employed to deposit nonporous platinum electrodes containing close-packed arrays of circular openings 300–400 nm in diameter through which the underlying YSZ surface is exposed to the gas phase. These nanostructured dense Pt array cathodes exhibited better structural integrity and thermal stability at the solid oxide fuel cell SOFC operating temperature of 450–500°C when compared to porous sputtered Pt electrodes. More importantly, electrochemical studies on geometrically well-defined Pt/YSZ sharp interfaces demonstrated that the cathode impedance and cell performance both scale almost linearly with the aerial density of TPB length. These controlled experiments also demonstrated that when normalized with respect to TPB length, the performance of different cells with different TBP densities agree well each other, indicating that TPB length governs cell performance especially in the activation polarization regime, as expected. Cells with a higher TPB density achieved better fuel cell performance in terms of higher power density and lower electrode impedance. © 2010 The Electrochemical Society. DOI: 10.1149/1.3455046 All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new approach to microstructure optimization of solid oxide fuel cell electrodes

Designing optimal microstructures for solid oxide fuel cell (SOFC) electrodes is complicated due to the multitude of electro-chemo-physical phenomena taking place simultaneously that directly affect working conditions of a SOFC electrode and its performance. In this study, a new design paradigm is presented to obtain a balance between electrochemical sites in the form of triple phase boundary (...

متن کامل

Evaluation of solid oxide fuel cell anode based on active triple phase boundary length and tortuosity

An efficient procedure is presented for the evaluation of solid oxide fuel cell (SOFC) anode microstructure triple phase boundary length (TPBL). Triple phase boundary- the one that is common between three phases of the microstructure- has a great influence on the overall efficiency of SOFC because all electrochemical reactions of anode take place in its vicinity. Therefore, evaluation of TP...

متن کامل

Evaluation of solid oxide fuel cell anode based on active triple phase boundary length and tortuosity

An efficient procedure is presented for the evaluation of solid oxide fuel cell (SOFC) anode microstructure triple phase boundary length (TPBL). Triple phase boundary- the one that is common between three phases of the microstructure- has a great influence on the overall efficiency of SOFC because all electrochemical reactions of anode take place in its vicinity. Therefore, evaluation of TP...

متن کامل

Nanostructuring Platinum Nanoparticles on Ni/Ce0.8Gd0.2O2-δ Anode for Low Temperature Solid Oxide Fuel Cell via Single-step Infiltration: A Case Study

With the aim of promoting the Ni/Ce0.8Gd0.2O2-δ (Ni/GDC20) cermet anodic performance of low temperature solid oxide fuel cell (LT-SOFC) [1], nanostructuring platinum nanoparticles on NiO/GDC composite was done by single-step wet-infiltration of hexachloroplatinic acid hexahydrate (H2PtCl6.6H2O) precursor on NiO/GDC20 composite. The anodic polarization resistance was measured using symmetr...

متن کامل

An investigation on effect of backbone geometric anisotropy on the performance of infiltrated SOFC electrodes

Design of optimal microstructures for infiltrated solid oxide fuel cell (SOFC) electrodes is a complicated process because of the multitude of the electrochemical and physical phenomena taking place in the electrodes in different temperatures, current densities and reactant flow rates. In this study, a stochastic geometric modeling method is used to create a range of digitally realized infi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010